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Abstract—In this work, the problem of the hydrodynamic instabilities of the thermocapillary flow inside a Silicon (Pr = 0.016) float
zone supported by a pair of coaxial disks and operating under µ–g conditions has been investigated. The system of the conservation
equations corresponding to a three-dimensional transient model was directly solved by employing a finite control volumes method
fully-implicit in time and a staggered spatial mesh in the cylindrical coordinates system. Results have shown that for a low Marangoni
number or a low temperature difference between the disks, the flow remains steady and consists of a perfectly axisymmetrical toroidal
structure with the vortex center located beneath the free surface near the cold disk. Beyond the first critical Marangoni number, say
Ma1

cr ≈ 48, the transition from the axisymmetrical to the steady three-dimensional state has been observed. The flow structure consists
of a drastically distorted torus with its vortex centers displaced both radially and axially and is located along a ‘saddle-like’ curve. At
the second critical Marangoni number, say Ma2

cr ≈ 80, the transition from this three-dimensional-steady-state to the three-dimensional-
oscillatory state occurs. Under the effects of some azimuthally travelling instabilities, the entire velocity and temperature fields rotate
around the main axis; and a dependent variable varies periodically both in time and space. The flow instabilities, which appear similar
to those of the theoretical ‘unstable vortex ring’, are believed to be of the hydrodynamic origin. A detailed description of the internal
flow structure and its dynamic behavior as well as a comparison with the previous numerical and experimental data have been given.
 2001 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

A aspect ratio = R0/H

Cp specific heat of the fluid . . . . . . . . J·kg−1·K−1

H height of the float zone . . . . . . . . . m
k thermal conductivity of the fluid . . . . W·m−1·K−1

Ma Marangoni number
= |∂σ/∂T |
T H/µα

Ma1
cr the first critical Marangoni number

Ma2
cr the second critical Marangoni number

P dimensionless pressure
Pr Prandtl number = Cpµ/k

R, θ,Z dimensionless radial, tangential and axial
coordinates

R0 radius of the zone . . . . . . . . . . . . m
t, T dimensional and dimensionless

temperature . . . . . . . . . . . . . . . K

∗ Correspondence and reprints.
E-mail address: nguyenc@umoncton.ca (C.T. Nguyen).

tM melting temperature of the material . . K

tH heated disk temperature on a step . . . K

t2 cold disk temperature = tM . . . . . . K

VR dimensionless radial velocity component

Vθ dimensionless tangential velocity
component

VZ dimensionless axial velocity component


T reference temperature difference
= tH − t2 . . . . . . . . . . . . . . . . K

α thermal diffusivity . . . . . . . . . . . m2·s−1

γ constant |∂σ/∂T | . . . . . . . . . . . . N·m−1·K−1

µ dynamic viscosity . . . . . . . . . . . . kg·m−1·s−1

ρ density . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension of liquid-vapor interface N·m−1

τ time . . . . . . . . . . . . . . . . . . . s

τ∗ dimensionless time
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1. INTRODUCTION

The float zoning technique [1] has become one of the
interesting means to produce highly homogeneous and
large crystals in space. Despite of a reduced effects of the
natural convection under the micro-gravity conditions,
the presence of the thermocapillary convection flow may
influence the entire domain. Its effects on the thermal
field within a float zone have received a particular atten-
tion from researchers, both experimentally [2–7] and nu-
merically [8–16]. An interested reader may consult a par-
tial review of previous works published in [17]. Recent
observations in Space as well as on Earth have shown that
the steady axisymmetrical thermocapillary flow may be-
come oscillatory and non-symmetrical when it becomes
sufficiently vigorous. In fact, the oscillatory flow inside
a NaNO3 (Pr ≈ 8.9) float zone of ≈ 6 mm in diame-
ter and ≈ 4 mm in height has been observed [4]. Two
different oscillatory modes were noticed: the first mode
or the non-symmetrical mode detected for R0/H ≤ 0.77
and the second mode or the symmetrical mode for the
range 1.43 ≥ R0/H ≥ 0.71. Several models of the insta-
bility mechanism have been proposed. Some researchers
[3, 4] believed that the thermocapillary flow may become
unstable (i.e., oscillatory) when the Marangoni number
exceeds a certain critical value Macr, say Macr ≈ 10000
(for NaNO3). The value of Macr remains likely constant
for a given material in Space and on Earth and seems to
be proportional to Pr0.75. On the other hand, it has been
shown that the flexibility of the free surface itself may
constitute a major factor in the generation of the oscilla-
tions [18, 19]. An interesting physical model has been
proposed [5] in which, the axisymmetrical/oscillatory
transition may likely be caused by a delay in the time-
response between the thermocapillary flow and the re-
turn one coming from the interior region. It has been
suggested [20] that the existence of a very thin thermal
boundary-layer beneath the free surface may be a possi-
ble cause of the oscillatory flow. The instability of the
buoyant layers inside a float zone has also been stud-
ied [7]. On the other hand, it has been stipulated [21]
that the oscillatory state may occur when the dynamic
Weber number Wed—defined as the ratio of the dynamic
pressure ρV 2/2 and the rigidity due to the surface ten-
sion σ/H at the free surface—reaches a certain critical
limit. They have proposed a new dimensionless parame-
ter, namely s = (2Wed)

1/2 to characterize the onset of the
oscillations.

The existence of such an oscillatory flow, which
may induce some undesirable inhomogeneities—called
‘striations’—in the microscopic structure of the crys-
tals themselves [41], has raised numerous analytical and

numerical studies from researchers. An oscillatory flow
within a half-zone of several liquids has been first numer-
ically simulated [22] where the agreement between their
numerical results and experimental data can be qualified
as quite acceptable, except for the oscillation frequencies.
A full-zone of Silicon was also studied [8, 23, 24], con-
sidering a deformable free surface but conserving how-
ever the axis-symmetry character of the flow field. These
authors have also investigated the oscillatory behavior of
the flow. The problem of the Rayleigh–Marangoni insta-
bilities in a vertical cylinder has been considered [25]
by using a finite-volume technique and by introducing
an ad-hoc axisymmetrical and three-dimensional distur-
bances in order to obtain bifurcation. In a recent study
[26], the problem of the stability of the flow in a half-zone
of a small Prandtl number fluid has been numerically in-
vestigated. The axisymmetrical thermocapillary flow has
been found to be unstable to a steady non-axisymmetrical
state for zone aspect ratio of 1. With further increase
of the thermocapillary Reynolds number, the flow loses
its stability to an oscillatory state. Recently, the oscilla-
tory Marangoni convection in a Silicone-oil liquid bridge
(Pr = 30 and Pr = 74) has been studied [27]. It has been
suggested that immediately after the onset of the insta-
bility, the flow can be described by a standing wave and
a pulsating temperature field. When the disturbances be-
come large however, the tangential velocity causes the
rotation of a ‘temperature-spots’ on the free surface so
that the instability can be described by the dynamic
model of an azimuthally traveling wave. In a more re-
cent works [38, 39], the authors have thoroughly studied
the oscillatory behaviors of the thermocapillary flow in
a NaNO3 half-zone under micro-gravity condition. The
critical Marangoni number corresponding to the onset of
the oscillations has been estimated to be 9750. The hys-
teresis phenomenon as well as the effects due to an in-
crease of the heating ramp-rate have also been investi-
gated.

In spite of these considerable efforts deployed to its
regard, the physical mechanism that governs the onset
of the time-dependent flow as well the comprehensive
picture of the flow organization remain, unfortunately,
not very well understood, especially for a very low
Prandtl number fluid such as Silicon which is often
used as a base material for an optical and electronic
components.

In the present paper, the problem of the hydrodynamic
instabilities of the Marangoni flow inside a cylindrical
float zone has been investigated by direct numerical sim-
ulation of a full three-dimensional and time-dependent
model, and this considering Silicon (Pr = 0.016) as the
fluid. The flow and the thermal field were determined

703



H. Bazzi et al.

and carefully scrutinized during their time-evolution fol-
lowing an imposed realistic heating scheme. The critical
Marangoni numbers corresponding to the two successive
transitions have been determined and the complete orga-
nization of the flow structure as well as the possible cause
of the instability will be presented and discussed.

2. MATHEMATICAL MODELLING

2.1. Governing equations

We consider a cylindrical zone of a liquid suspended
freely, under surface tension effects and micro-gravity
condition, between a pair of coaxial and parallel disks,
figure 1. The disks are held fixed at an uniform temper-
atures, respectively, t1 and t2, with t2 = tM where tM is
the melting temperature of the material considered and
t1 = f (τ) varies as a known function of time. The fluid
is considered to be Newtonian and incompressible with
constant physical properties, except for the surface ten-
sion which is assumed to decrease linearly with the tem-
perature:

σ = σM − γ (t − tM) (1)

where the constant γ is assumed to be positive mean-
ing that the fluid particles will generally pull away from
a high temperature region on the free surface. The vis-
cous dissipation is considered negligible in the energy

Figure 1. Geometry configuration of the problem under study.

equation. The free surface of the zone is assumed ther-
mally insulated and radially non-deformed, but can al-
low the transfer of heat and momentum in both the axial
and circumferential directions. The condition of a ther-
mally insulated surface represents quite appropriately the
real situations often encountered in the experimental plat-
forms. The assumption regarding the perfectly cylindri-
cal shape of the free surface is motivated by the fact that
for the cases considered, the capillary number, defined as
Ca = γ
T/σ , remains very small, say Ca < 10−3, in-
dicating the dominant effect of the surface tension force
[38]. Furthermore, our numerical simulations consider-
ing the deformed free surface [28, 40] have clearly shown
that, under micro-gravity condition (i.e., ≤ 10−4 g), the
maximum radial deformation of the free surface did not
exceed, in any case tested, 0.08% of the zone nominal
radius.

In the present study, the following quantities H ,
(γ
T/µ), (Hµ/γ
T ), ρ(γ
T/µ)2, and 
T =
tH − tM have been, respectively, adopted as the reference
length, velocity, time, pressure and temperature differ-
ence (note that tH is the hot disk temperature correspond-
ing to the end of each of the heating steps considered,
as shown in figure 2). A dimensionless variable is then
obtained by normalizing the quantity considered with re-
spect to the corresponding reference quantity, except for
the dimensionless temperature which is defined as:

T = (t − t2)/
T (2)

The dimensionless governing equations written in the
cylindrical coordinates (R, θ,Z) system are as follows

Figure 2. Time-variation of t1(τ) as imposed for simulation of
several cases with Silicon (Pr = 0.016, A = 0.7).
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(see Bazzi [28]):

∇ · V = 0 (3)

∂Vi/∂τ ∗ + ∇ · (V · Vi)

= −∇P + (Pr/Ma)∇2Vi + Si, i = 1,2,3 (4)

∂T /∂τ ∗ + ∇ · (V · T ) = (Pr/Ma)∇2T (5)

where V = (VR,Vθ ,VZ) is the velocity vector and S1,
S2 and S3 are the velocity-related stress terms given as
follows:

– for i = 1, the radial direction:

S1 = VθVθ/R − (Pr/Ma)

× {
VR/R2 + (

2/R2)∂Vθ/∂θ
}

(6)

– for i = 2, the tangential direction:

S2 = (Pr/Ma)
{(

2/R2)∂VR/∂θ − Vθ/R
2}

− VRVθ/R (7)

– for i = 3, the axial direction:

S3 = 0 (8)

2.2. Boundary and initial conditions

The highly non-linear and coupled governing equa-
tions (3)–(5) must be appropriately solved subject to the
following boundary and initial conditions:

– on both disks, the usual non-slip and non-penetration
conditions prevail. The disk no. 2 is held at constant tem-
perature T2 = 0, while T1 varies with time τ ∗ according
to an a priori known function (shown in figure 2);

– the free surface, as stated previously, is considered
thermally insulated and remains perfectly cylindrical.
Also, the equilibrium of the shear stress in the axial
and tangential directions along that surface must be fully
satisfied. The resulting boundary conditions are then as
follows:
at R = A = R0/H :

VR = 0 (9a)

∂VZ/∂R = −∂T /∂Z (9b)

(1/A)∂T /∂θ = −{∂Vθ/∂R − Vθ/A} (9c)

∂T /∂R = 0 (9d)

– initial conditions: we assume that at the beginning
of the heating process, i.e., at τ ∗ = 0, the quiescent
condition applies with the fluid temperature equal to its
melting temperature tM throughout. In order to minimize

any numerical error which may be accumulated during
the search for the solution, these initial conditions have
been systematically employed for each of the cases
simulated.

The governing equations (3)–(5) and their boundary
conditions reveal that the problem under consideration
may be characterized by a set of three dimensionless
parameters, namely the Marangoni number Ma, the
Prandtl number Pr and the aspect ratio A (see the
Nomenclature).

2.3. Numerical method and validation

The modified-SIMPLE method, which was success-
fully used in a previous study for a NaNO3 float zone [38,
39], has been employed here again to solve the system
of conservation equations (3)–(5) subject to the above
boundary and initial conditions. Since this method has
been very well documented elsewhere (see [29, 30]), only
a brief review is given here. This method, as other mem-
ber of the SIMPLE-codes family, is based on the finite
control volume approach where each of the conserva-
tion equations is integrated over a finite volume using
the exponential scheme for the treatment of the combined
‘convection-and-diffusion’ fluxes (of heat and momen-
tum) resulting from the transport process, and the fully-
implicit scheme for the transient term in the equations (4)
and (5). Also, the staggered grids have been used where
the velocity components are calculated at the center of
the volume interfaces while the pressure as well as the
other scalar quantities such as the temperature and the
species concentration are computed at the center of the
control-volume. The algebraic ‘discretization equations’
resulting from this integration process have been solved
sequentially within each time step. A special ‘pressure-
correction’ equation, which was obtained by combin-
ing the discretization form of the Navier–Stokes equa-
tions (4) and the one of the continuity equation (3), has
been employed to compute the guessed pressure field as
well as to correct the velocities field in order to satisfy
progressively, i.e., in a iterative manner, all the discretiza-
tion equations (see [29] for the complete details regarding
the above numerical algorithm).

In order to ensure the consistency as well as the accu-
racy of the numerical results, several non-uniform grids
have been submitted to an extensive testing procedure
[38]. Results have show that the 26 × 26 × 24 grid, re-
spectively, 26, 26 and 24 control volumes in the radial,
axial and tangential directions, with highly packed grid
points along the domain boundaries—appears to be quite
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satisfactory to ensure the precision of the numerical re-
sults. In conjunction with the high Marangoni numbers
used in the test cases, the chosen grid appears to be quite
appropriate for the entire range of the parameter Ma con-
sidered in this study [28, 38].

For all the numerical experiments performed in this
work, a time step 
τ as small as 1/50 s has been em-
ployed throughout. As convergence indicator at every
time step, the so-called ‘residual mass’—i.e., the residue
resulting from the integration of the continuity equa-
tion (3) over a finite control-volumes—was systemati-
cally monitored and scrutinized. For all of the simulations
performed, the maximum residual mass has been kept at
a level as low as 0.001% (on the normalized basis).

The computer program has been extensively and suc-
cessfully validated by comparing the calculated results
with the available data in the literature for many cases.
The quantitative comparison was carried out on the fluid
axial velocity and temperature on the free surface, and
this for both the steady and transient cases. In general, the
agreement can be qualified as quite acceptable. The com-
plete details regarding the study of the grid independence,
the code validation as well as the other numerical infor-
mation have been presented elsewhere (see [28, 38]).

3. THE HYDRODYNAMIC INSTABILITY
OF A LOW PRANDTL NUMBER FLUID,
Si

The fluid selected in this study is Silicon (Pr =
0.016) because of its wide application in various elec-
tronic components. During the numerical simulation of
a typical case, the structure of the thermal and hydro-
dynamic fields has been carefully scrutinized while trac-
ing through the increase of 
T between the disks (or the
Marangoni number). Figure 2 shows the time-variation of
the hot disk temperature as used for the simulated heating
process. The flow nature corresponding to each of the lev-
els of the parameter Ma considered has also been shown
for discussion purpose. The heating ramp rate dt1/dτ has
been fixed to be 2 ◦C·min−1, a value which appears to
be experimentally realistic. Also, for each of the cases
tested, a sufficiently large elapse-time has been allowed
after having reached a constant level of 
T in order to
ascertain the nature, either steady or oscillatory, of the
flow. The aspect ratio has been fixed to be 0.7 for all of
the simulations performed for Si.

3.1. The flow basic state

For a relatively low value of Ma, say Ma < 48, it has
been observed that the flow structure remains steady and
perfectly axisymmetrical, figure 3(a). It consists of an
usual toroidal flow pattern with a strong fluid circulation
observed in the vicinity of the free surface as well
as in the central region of the liquid zone. Also, the
vortex center is located near the free surface which is
characteristic for any surface-tension-driving flow. It is
interesting to observed that the vortex center is located on
the side of the cold disk. Such a behavior, which seems to
be proper to a low Prandtl number fluid, may be explained
by the presence of high temperature gradient on the
free surface near the cold disk, and as consequence,
a high axial velocity prevails in that region [28, 40]. The
steadiness of the flow is obvious from the figure 3(b)
which shows identical temperature profiles for three
particular points located on the free surface at the middle
plane Z = 0.5. It has also been observed that the fluid
circulation increases appreciably with the increase of the
Marangoni number. Such a behavior is physically quite
realistic and can be explained by the fact that increasing
Ma corresponds directly to an increase of 
T which,
in turn, directly influences the driving-thermocapillary
force on the free surface. Hence, in general, the fluid
circulation within the zone will increase with the increase
of Ma. The complete results regarding the structure as
well as the behaviors of the flow and the temperature field
corresponding to the axisymmetrical cases with Si have
been presented in [28].

3.2. The first transition to the steady
three-dimensional state

It is very interesting to observe that when the fluid cir-
culation becomes vigorous enough, say for 80 > Ma ≥
48 ≈ Ma1

cr, the first transition from the above axisym-
metrical state to the steady three-dimensional state oc-
curs. The flow and the temperature field, although ex-
hibiting clearly their three-dimensional character, remain
however perfectly steady as confirmed from the temper-
ature profiles obtained at three particular points located
on the zone free surface, figure 4 (these points are ex-
actly those considered earlier in figure 3(b)). The internal
flow structure is rather complex. Figure 5 shows, for the
case Ma = 64 for example, the corresponding isotherms,
contours of VZ as well as the structure of the transver-
sal velocities in the cross-section at Z = 0.5. One can
easily observe that the contours of the temperature and
the axial velocity are no longer circular and concentric
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(a) (b)

Figure 3. Basic state: the steady and axisymmetrical flow structure.

Figure 4. Onset of the transition from the steady-
axisymmetrical to the steady-3D state (Ma = 64).

as in an axisymmetrical case, but are now distorted into
an elongated elliptic shape, and they exhibit alternate re-
gions of high and low gradients of T and VZ along the
circumference of the free surface. The elongated shape is
similar for T and VZ, i.e., a high temperature gradient re-
gion coincides with a low axial velocity gradient one, and
vice-versa. From figure 5(c), we can notice the presence
of four different circulation zones which are symmetri-
cal but counter-rotating by pair with respect to the center
point. The strong secondary movement of the fluid di-
rected against the free surface may be observed. It is very
interesting to mention here that along the circumference
of the free surface, the fluid pulls away from a cold re-

gion and directs toward an adjacent hot one which is, ob-
viously, contrary to the well-known thermocapillary ef-
fect. This fact is very important since it indicates that the
cause of the perturbations observed on the flow and tem-
perature fields may be of the hydrodynamic origin, i.e.,
the instabilities appear to be first generated from some
perturbations of the velocity field, as discussed later in
Section 3.4. Another interesting consequence of this in-
stability may also be observed on figure 5(d) which shows
the structure of the isotherms on the free surface as ob-
tained for the case Ma = 64 considered. Instead of the
straight and parallel lines corresponding to the axisym-
metrical case, the isotherms are now exhibiting clearly
a ‘wavy’ pattern along the circumference, although the
distortion observed does not appear visually to be very
drastic. It is interesting to mention here that such a wavy
pattern of the isotherms is similar to the one observed
experimentally [34] on a NaNO3 (Pr = 8.9) liquid zone
(see also [38, 39]).

Figure 6(a)–(d) shows respectively, the structure of
the velocity field as obtained in four different R–Z planes
at θ = 0◦, 45◦, 90◦ and 135◦ for the case Ma = 64.
The radial and axial coordinates of the vortex center
are also provided for discussion purpose. Since the flow
appears to be diametrically symmetrical with respect to
the singular point, i.e., the center of the cross-section,
the reconstruction of the coherent structure of the flow
may be then possible from figure 6. One can observe,
at first, that the usual toroidal structure corresponding
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Figure 5. Steady and three-dimensional structure of isotherms (a), iso-contours of VZ (b) and transversal velocities (c) in a middle
cross-section; and structure of isotherms on the zone free surface (d), for the case Ma = 64.

to the thermocapillary basic flow still prevails, with
a strong fluid circulation noticed beneath the free surface
and the vortex center located near that surface. We
note, however, that the location of this vortex center
as well as the entire velocity field in the bulk fluid
region change considerably from one R–Z plane to
another. The shift in the position of the vortex center
appears to be very important, particularly along the axial
direction where its coordinate has shift from Z = 0.5
at θ = 0◦ to Z = 0.41 at θ = 45◦, and to its extreme
position, Z = 0.26 at θ = 90◦ and finally to Z = 0.39
at θ = 135◦. In fact, for the case under consideration,
the vortex center follows an elongated elliptic path in
the R–θ plane. Thus, the steady pathway of the vortex
center would take the form of a ‘saddle–shape’ (similar
to the one shown later in figure 12(b)). The velocity
field has also changed drastically, see, for example,
figures 6 (a) and (c) for the corresponding extreme
positions of the vortex center. In summary, after the

first transition point corresponding to Ma = Ma1
cr ≈ 48,

although the primary toroidal flow structure does still
exist, the latter is subjected to a severe distortion under
the effects of the hydrodynamic instability.

3.3. The second transition to the
three-dimensional oscillatory state

With further increase of the temperature difference
between the disks or the Marangoni number, say for
Ma ≥ Ma2

cr ≈ 80, the second transition from the above
3D-steady state to the 3D-oscillatory state clearly occurs.
The latter is characterizing by a periodic time-variation
of a dependent variable with respect to the time at a fixed
point in space, but the perturbations have been found to
be space-dependent as well. Figure 7 shows eloquently,
for the case Ma = 128 in particular, such periodicity
in time at three particular points located on the free
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Figure 6. Steady-three-dimensional flow structure in four different R–Z planes (Ma = 64).

Figure 7. Temperature oscillations for three particular points
on the free surface (Ma = 128).

surface (exactly the same points considered earlier in
figures 3(b) and 4). The peak-to-peak amplitude of the
temperature oscillations is estimated to be 0.18 ◦C while
the frequency has been determined to be 0.026 Hz by
using a standard FFT technique. Such an oscillatory
behavior can be better understood by scrutinizing the
structure of the thermal field and its time-evolution.
Figures 8 and 9 show, respectively, for the case under
consideration and for four different times during one
complete cycle of the oscillations, the isotherms structure
at the middle cross-section (at Z = 0.5) as well as those
on the zone free surface. As observed before with the
3D-steady case (see again, figure 5), we can see that
the similar effects due to the instability on the thermal
field are also prevailing in the 3D-oscillatory case here.
Thus, isotherms in a cross-section become drastically
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Figure 8. Instantaneous snapshot of the isotherms structure in a middle cross-section during one complete cycle of oscillation
(Ma = 128).

Figure 9. Instantaneous snapshot of the isotherms structure on the free surface during one complete cycle of oscillation (Ma = 128).

distorted into an elliptic shape where an alternate hot
and cold zones do exist on the zone free surface. It is
very interesting to observe that these distorted isotherms
are not steady, but rotate in fact around the main axis
while conserving their elliptic shape. Such a striking
behavior creates, for a particular location, an oscillatory
time-evolution of a dependent variable, for example the

temperature, as seen previously on figure 7. These effects
are believed to be due to some azimuthally traveling
instabilities, as explained later in the Section 3.4. The
effects due to these traveling instabilities have also
been clearly noticed through the ‘wavy’ pattern of the
isotherms on the free surface, figure 9. One can observe
that for the case Ma = 128 under consideration here, the
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distortion induced on the isotherms appears obviously
more pronounced with respect to that of the earlier 3D-
steady case Ma = 64 (see figure 5(d)), thus indicating
that the instability effects are stronger with the increase
of the Marangoni number. In fact, for the same points
located at Z = 0.5 on the free surface which were
considered previously in figures 3(b), 4 and 7, the peak-
to-peak amplitude of the temperature oscillations has
been determined to be 0.07 ◦C, 0.10 ◦C and 0.18 ◦C
respectively for Ma = 80, 96 and 128. The flow under
high Marangoni number appears to be more vulnerable to
a disturbance. Such a behavior, which is consistent with
the experimental observations (see, in particular [4]) as
well as with the numerical predictions (see, for example,
[27, 38]), may be explained by the fact that for a higher
Marangoni number, the intensity of the thermocapillary
flow increases considerably and hence, the destabilizing
effect due to a vigorous convection would take over the
beneficial stabilizing effect due to the fluid viscosity.

Figures 10 and 11 show respectively for the case Ma =
128 considered, the structure of the velocity field in the
cross-section at Z = 0.5 for four different times during
one cycle, as well as the instantaneous view of this ve-
locity field at four different R–Z planes corresponding to

θ = 0◦, 45◦, 90◦ and 135◦. Here again, as we have seen
before with the 3D-steady case, the internal structure of
the flow field in a R–θ plane is rather complex because
of the existence of four different circulation zones within
the bulk fluid region. The alternate areas where strong
merging currents are directed radially outwards against
the free surface may be clearly noticed; while in the ad-
jacent areas, the collision of two counter-currents on the
free surface results in a drastically reduced circulation of
the fluid in a transversal plane. In general, the circum-
ferential circulation of the fluid is more pronounced in
the vicinity of the free surface than in the central core re-
gion. Also, it has been observed that the above complex
flow structure exhibits clearly its ‘rotating’ behavior az-
imuthally around the circumference: the same transversal
flow structure appears to move circumferentially in the
clock-wise direction to another angular position and ul-
timately, will complete a full rotation after one period of
oscillation. Another point of fundamental interest resides
in the fact that the surface currents of the fluid on the
free surface pull away from a cold region and direct to-
wards another adjacent hot region (see figures 8 and 10).
Such a striking behavior, as observed and discussed pre-
viously, indicates that the perturbations would be of the

Figure 10. Instantaneous snapshot of the transversal flow structure in the middle cross-section during one complete cycle (Ma = 128).
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Figure 11. Instantaneous view of the flow structure in four different R–Z planes (Ma = 128).

hydrodynamic nature. In the same idea, it is interesting
to mention here that for a moderate Prandtl number fluid
such as NaNO3 (Pr = 8.9), the flow instabilities appear
to be of the thermal origin [38], i.e., they are first gen-
erated from some perturbations on the temperature field.
With regard to the corresponding velocity field in a R–Z

plane, the instantaneous snapshot for four different angu-
lar positions shows eloquently the drastic effects due to
the instabilities on the flow structure, figure 11. One can
clearly observe that under such effects, the entire veloc-
ity field is changing considerably from one angular posi-
tion to another. The shift of the vortex center along both
the radial and axial directions appears to be considerably
pronounced at such a high Marangoni number considered

here, say Ma = 128. Thus, the extreme positions of this
vortex center may be detected at (Z∗ = 0.25, R∗ = 0.58)
for θ = 45◦ and at (Z∗ = 0.55, R∗ = 0.41) for θ = 135◦.
It is important to recall here that information displayed in
figure 11 are in fact instantaneous, i.e., taken at a given
fixed time. As mentioned before, the entire velocity and
temperature fields rotate around the main axis of the zone
under the effect of an azimuthally traveling instabilities.
Such a strikingly dynamical behavior, in particular for
the vortex center, is shown in figure 12 where the pro-
jected elliptic pathway of the vortex center is illustrated
for two instants, say at τ and τ + τ0/2(τ0 is the oscilla-
tions period, estimated to be ≈ 38.46 s). In fact, for this
case Ma = 128 or all other cases where the oscillatory
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Figure 12. (a) Instantaneous positions of the vortex center in
a R–θ plane for τ and τ + τ0/2; (b) Instantaneous view of the
pathway of the vortex center (not to scale).

state exists, the three-dimensional instantaneous view of
the pathway of the vortex center looks like a ‘saddle-like’
shape as shown in figure 12(b). Finally, for the same rea-
son mentioned earlier regarding the vulnerability of the
flow to a perturbation at high Marangoni number, it has
been observed that the shift in the position of the vor-
tex center appears to be more pronounced, although only
slightly, with the increase of the parameter Ma.

3.4. On the possible cause of the
instabilities

From the results shown previously, one can see that
for a low value of the governing parameter Ma, say
Ma < 48, the flow remains steady and perfectly axisym-
metrical. Beyond the first critical Marangoni number, say
Ma1

cr ≈ 48, the flow clearly exhibits its three-dimensional
character but still remains steady. It is observed that,

under the effects of some perturbations, the axial fluid
circulation on the free surface is subject to a remarked
circumferential deviation which is contrary with respect
to the well-known thermocapillary law. With further in-
crease of the forcing parameter Ma beyond the second
critical Marangoni number, say Ma2

cr ≈ 80, the flow be-
comes oscillatory and exhibits clearly its ‘rotating’ char-
acter around the main axis. It is believed that both the
‘steady’ perturbations observed for Ma1

cr ≤ Ma < Ma2
cr

as well as the ‘dynamic’ ones noticed for Ma � Ma2
cr

are the effects of a certain form of the flow instability.
Thus, the thermocapillary effects appear to act only as the
driving force in order to maintain the basic flow state (see
again, figure 3) while the instability effects, once super-
imposed on this basic state, have created a striking three-
dimensional flow organization observed previously. Such
an instability has also been believed to be of the hydrody-
namic nature, in conjunction with the earlier discussion
regarding the anti-thermocapillary circulation of the fluid
observed on the zone free surface.

It is very interesting to note here that the distorted
torus as illustrated in figures 11 and 12 seems to possess
several common features with the one obtained from the
theoretical ‘unstable thin vortex ring’ theory [36]. This
study, based on the theory of the linear perturbations,
has shown that a thin vortex ring of constant vorticity
appears to be almost always unstable due to some local
distortion that a single vortex filament may induce on
itself. Such a behavior may exist as well inside a float
zone where a vortex filament is, in fact, circumferentially
continued and bounded. It should be noted that in the case
of a cylindrical float zone as the one under study here,
the presence of the disks rends somewhat difficult any
direct comparison, in spite of the close similarity between
the two problems considered. From the above unstable
‘thin vortex ring’ theory, it has been established that after
the onset of the instabilities, the vortex center would
shift in a sinusoidal manner along the torus perimeter,
vertically as well as radially, on a lines inclined at
45◦ with respect to the vertical main axis. Due to this
inclination, a part of the torus is moving towards the
center while going downward, and the other part of the
torus is shifting upwards while approaching the center.
In the case considered here, although some displacement
of the vortex center is clearly noticed, its movement
seems not to obey exactly to the above description,
probably due to the presence of the solid disks. It has
been believed that the instability form similar to that of
an unstable vortex ring may be the possible cause of
the perturbations observed so far in this work on the
Silicon float zone. Such an instability may produce, as
results, a non-zero circumferential velocity of the fluid.
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It has been noticed, numerically, that immediately after
the first transition point, this circumferential velocity
remains very weak so that perturbations on the flow field
appear to be ‘steady’ with respect to the θ -direction (see
again, figures 5 and 6). But with a further increase of the
forcing parameter Ma, the instability grows considerably
inside the zone which results in a more pronounced
displacement of the vortex center and a higher tangential
velocity component. Hence, the ‘rotating’ effect would
set in creating a striking effects as observed before (see
again, figures 8, 9 and 10).

3.5. Comparison with other
experimental and numerical data

Due to the fact that Silicon is a non-transparent fluid,
there were practically no direct observations on the in-
ternal flow structure. The oscillatory behaviors of a Sili-
con float zone was first studied experimentally in [37]. It
has been found that the second critical Marangoni num-
ber Ma2

cr (the one corresponding to the onset of the os-
cillations) likely lies within the interval 61–87. However,
the first critical Marangoni number Ma1

cr (the one which
corresponds to the onset of the 3D-steady-state) has not
yet been measured experimentally. Table I shows the lim-
ited comparison between our values as obtained for Ma1

cr
and Ma2

cr with other numerical and experimental data.
The agreement with the experimental data for Si from
[37] as well as with the numerical results from [26] (for
fluid with Pr = 0.01) can be qualified as quite accept-
able. Our value predicted for Ma2

cr is also close to the one
calculated by using Pr = 0.016 and the empirical corre-
lation proposed in [42] for various low Prandtl number
fluids. With regard to the numerical work published in
[23, 24], there was no possible comparison due mainly to
the 2D-axisymmetrical assumption adopted in this work.
Such an assumption has eliminated virtually all possibil-
ity to obtain numerically a real three-dimensional flow.

TABLE I
Comparison with other experimental and numerical data.

(1) (2, 3) (4) (5)

Ma1
cr 48 – 19.6 –

Ma2
cr 80 ≈ 61–87 (2) 62.5 200

93.7 (3)
(1) Numerical results Pr = 0.016, this work.
(2) Experimental data from [37] for Silicon.
(3) Empirical correlation from [42] with Pr = 0.016.
(4) Numerical results from [26] for Pr = 0.01.
(5) Numerical results from [22] for Pr = 0.02.

Finally, it should be noted that the critical Marangoni
number increases with the Prandtl number, because of the
augmentation in the stabilizing effects due to the fluid
viscosity. Therefore, it is somewhat expected that our
value as obtained for Ma2

cr would fall between the value
predicted by [26] and the one by [22]. Such a dependence
of Ma2

cr on the fluid Prandtl number appears to be quite
consistent with that observed experimentally (see, for ex-
ample, [42]).

4. CONCLUSION

In this paper, we have investigated, by direct numer-
ical simulation, the transient behaviors of the flow in-
side a cylindrical Silicon float zone under µ–g condi-
tion. The conservation equations resulted from a full 3-D
and time-dependent model have been solved by employ-
ing the modified-SIMPLE method. Results have clearly
shown that for a low Marangoni number, say Ma < 48,
the flow remains steady and perfectly axisymmetrical.
For the intermediate range of Ma, say Ma1

cr ≈ 48 ≤ Ma <

80, the transition from this steady-axisymmetrical to the
steady-3D state occurs. The toroidal flow structure ex-
hibits a drastic distortion due to the radial and axial shift
of the vortex center from one angular position to another.
With a further increase of the Marangoni number beyond
the second critical Marangoni number, say Ma2

cr ≈ 80,
the second transition from this steady-3D state to the
oscillatory-3D state occurs. Under the effects of the az-
imuthally traveling instability, the entire flow and ther-
mal fields rotate around the zone main axis. On the free
surface, the fluid is subjected to a pronounced and anti-
thermocapillary deviations along the circumference. The
vortex center exhibits a drastic shift along the ‘saddle-
like’ curve which is both time and space-dependent. The
instabilities, which result in the two transitions, are be-
lieved to be of the hydrodynamic origin and similar to
those of the theoretical ‘unstable thin vortex ring’.
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